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Abstract

The transient response of a linearly elastic structure made of a layer overlaying a half-space, subjected to
a normal point force on its free surface, is investigated. Both welded contact and frictionless sliding are
considered at the interface. This paper presents a method to calculate the response, for a wide range of
loading durations ðTÞ; on the axis of symmetry of the configuration (in the layer and the half-space).
Equations of the boundary–value problem are manipulated in an integral transform domain and the
Cagniard–de Hoop method is used. The final form of the exact analytical solution is a sum of contributions
corresponding to the rays of the generalized ray theory; little computational effort need be developed for
evaluating each contribution. While this theory has only been used to obtain early-time responses, long-
time responses—up to 30 times the transit time of P-waves in the layer—have been calculated for this study.
This work was conducted to help characterize the stress transmitted in the human lung (half-space) when
the thoracic wall (layer) is subjected to a non-penetrating impact. Depending on T ; multiple reflections of
waves in the layer or typical low-frequency response are observed. The influence of the contact condition
with respect to T is elucidated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The investigation presented in this paper arose out of the need for a better understanding of the
transmission of mechanical energy within a layered structure subjected to a non-penetrating
impact on its surface. In order to assess damage due to dynamic loading, both amplitudes and
time histories of stresses and displacements may be relevant. In many cases when the structure can
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be modelled as a stack of linearly elastic materials, analytical methods can be considered and
histories obtained with great accuracy and little computational effort in a form that often yields
much physical insight (as opposed to purely numerical methods like boundary or finite elements
methods).

Mencher [1] investigated the simplest layered medium: a plate of infinite extent. He set the basis
of a method that eventually yields exact analytical solutions for displacements and stresses under
concentrated dynamic loading. Mencher obtained closed form solutions for the epicentral
displacement, due to a buried source of pressure waves, as a sum of terms each corresponding to a
wave reflected a certain number of times on the plate surfaces; this type of solution has later been
referred to as a generalized ray solution [2], (see Ref. [3] for a review of the generalized ray theory)
and is in general associated with the Cagniard–de Hoop method [4,5]. Following Mencher’s work,
many authors have contributed to the field by developing new solutions for the response at any
receiver location and for various types of concentrated loadings in both axisymmetric [6–9] and
non-axisymmetric [10,3,11] configurations.

In parallel with the method of solution for the calculation of the plate response, methods based
on the generalized ray theory were developed for geophysical applications to compute synthetic
seismograms in layered media with an arbitrary number of parallel layers (see Refs. [12,13] for
reviews of the method). A typical generalized ray solution is not obtained straightforwardly by
solving the elastodynamics equations with given boundary conditions but is constructed by
intuition: the generalized rays to take into account are numbered and the analytic expression for
the contribution of each ray is built by assembling different blocks—terms of a product—which
stand for the type of source, the polarization of the wave at the receiver and at the source and
coefficients of reflection/transmission. Doing so, many problems of wave propagation in stratified
media can be treated without explicitly solving the tedious boundary–value problem.

In the most general cases—tridimensional configuration and arbitrary receiver location—each
generalized ray contribution has an analytic expression that is not obtained in closed form and
their evaluation requires some numerical computations. As a consequence, numerical results with
the generalized ray theory have only been obtained in situations where a few number of rays need
to be taken into account. In the generalized ray theory, the rays combine into ray groups [3], each
of which contains all the rays that have undergone a given number of interactions—reflections
and transmissions—with interfaces of the layered medium. In a plate excited by a point force on
one of its surfaces, the number of rays in a group is 2nþ1; where n is the number of interactions of
the rays with surfaces; in a layered medium, the number of rays is even more important since each
wave that hits an interface gives rise to two reflected and two transmitted waves.

The complexity in the form of the solution for each ray is minimum for axisymmetric
configurations where the receiver and the source are placed on the axis of symmetry; in such cases,
exact analytical closed-form solutions can be derived in a plate. In the same source/receiver
configuration in layered media, only one equation (the solution of which is the Cagniard contour)
must be solved with a numerical method at each time instant, so that accurate solutions are
obtained with little computational effort [14]. For arbitrary receiver and source locations, the
generalized ray method is much more costly with respect to numerical computations because an
integral must be evaluated for each ray; furthermore, since the contributions of head waves and
surface waves must be calculated individually (and added to body waves contributions), the
method must be implemented very cautiously. With receivers and source on the axis of symmetry,
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head waves never contribute; and interface waves need only be computed for receivers on the
interfaces.

In the present paper, the response of an elastic structure made of a layer overlaying a half-space
and subjected to a time-dependent normal point force on the free surface is investigated
(see Fig. 1)—this configuration is axisymmetric. Two contact conditions are considered at the
interface: welded contact and frictionless sliding contact. The paper is focussed on the special case
where the receiver is placed on the axis of symmetry (in the context of assessing the energy of
impact transmitted in the half-space, these locations are those where maximum amplitudes are
expected).

The aim of this paper is to present a method to obtain the exact solution of the elastodynamics
problem for a wide range of loading durations. The results presented demonstrate that the
response to relatively ‘‘long’’ impulses—of duration about 30 transit times of P-waves in the
layer—can be calculated in practice with little computational effort by using the generalized ray
theory. The low computational cost of each ray contribution in the configuration considered
makes it possible to handle the several millions of rays required to obtain long-time responses.
The algorithm of the calculation code is made efficient by generating the rays systematically by an
iterative process.

In this paper, the derivation of the solution is constructed from the elastodynamics equations
and the boundary conditions by using a matrix formulation. Doing so, the generalized ray
decomposition of the solution is obtained as a result and not by intuition. This method has
become popular recently [15–18]. Analytical solutions are derived in a Laplace–Fourier transform
domain which is the dual of the time–space domain, and the inverse transformation for each ray
contribution is performed by means of the Cagniard–de Hoop method. Even though in the
present paper results are only given for receivers on the axis of symmetry of the configuration,
the methodology—except for some details of the inverse transformation procedure—and the
computational scheme presented are valid in the general case.

The response of a layered structure subjected to dynamic loading depends both on the relative
stiffness of the materials and the duration of the loading. The response to a ‘‘short’’ impulse can
be described in terms of waves while for a ‘‘long’’ impulse the characteristic dimensions of the
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Fig. 1. Model configuration and co-ordinate system.
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structure play a major role. For the structure considered in this paper (Fig. 1), a possible
criterion for determining a priori the relative importance of wave versus structural phenomena
is the ratio of the duration of the impulse with the transit time of a wave to cross the
layer thickness once. If the ratio is far from one, then approximate theories may be considered;
the method of solution presented, which is free of approximation, is especially useful in
cases where the ratio is close to one—i.e., when the wavelengths involved are of the order of
magnitude of the characteristic dimensions. As the method yields an exact solution of the
elastodynamics problem, long-time, static values (obtained after equilibrium, when the structure
has come back to rest) are obtained, even though the solution is expressed in terms of waves
propagating.

The analysis presented in this paper was motivated by interest in the response of the human
thorax subjected to a short pressure impulse, as, for instance, when a bullet is stopped by a
bulletproof jacket. In this context, the layer and half-space correspond, respectively, to the
thoracic wall and the lung. Since for the specific wave propagation problem under consideration
there is no quantitative data available on the possible viscous mechanisms of energy dissipation in
biological tissues, these mechanisms are not taken into account in the material models. However,
viscous dissipation may somewhat modify the conclusions of this paper relative to the
propagation of energy in the thorax model. The present work is a continuation of the work
presented in Refs. [14,19], which dealt with similar model configurations and the same method of
solution, but in which only the contribution of the first group of generalized rays transmitted in
the half-space was considered. With the results presented in this paper, some mechanisms of the
transmission of energy in the lung are elucidated.

Note that the method presented can be used for any set of values for the elastic properties of the
layer and half-space. Typical engineering applications are found in non-destructive evaluation of
materials.

The present paper is organized as follows: with this introduction as background, Section 2 gives
a description of the configuration and the basic equations. In Section 3 the exact solution in a
Laplace–Fourier domain is obtained as a sum of generalized ray contributions by using a matrix
formulation. The transformation of each ray contribution back to the time–space domain is
briefly presented in Section 4. Section 5 is devoted to the implementation of the method. In
Section 6 the results of some computations for a material configuration and loading durations
relevant to our biomechanical application are collected.

2. Description of the configuration and formulation of the problem

2.1. Configuration and definitions

Consider the structure represented in Fig. 1. It consists of a layer of infinite extent
(medium 1) with thickness h overlaying a half-space (medium 2). The layer has a free
surface, referred to as surface I, and the interface with the half-space is referred to as surface II.
At surface II, the contact condition is, alternatively, perfect bonding (welded contact) or
perfect sliding (smooth contact). Both media are linearly elastic, homogeneous and isotropic;
for the characterization of the elastic properties, the Lam!e constants l and m are used. The
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mass density is denoted by r: Throughout this paper, superscripts (1) and (2) refer to media 1 and
2, respectively; however, superscripts may be omitted in equations valid for both media, if no
ambiguity results.

The position is specified through the co-ordinates ðx1;x2; x3Þ with respect to a Cartesian
reference frame RðO; x1;x2;x3Þ where O is the origin and ðx1; x2;x3Þ is an orthonormal basis for
the space; the x3-axis is taken perpendicular to surfaces I and II. The free surface of the layer
coincides with plane x3 ¼ 0 and the structure is localized in the half-space x3X0: Time is denoted
by t: The elastic response is characterized in R by the components sij of the Cauchy stress tensor
and by the components vi of the particle velocity v:

At the origin of the Cartesian reference frame (i.e., on the free surface), the layer is
subjected to a dynamic point force of direction x3; hence both pressure (longitudinal) waves
and shear (transverse) waves with vertical polarization are induced in the structure. Shear waves
with horizontal polarization are not propagated in the configuration considered; however, the
method of solution may be used with a point force of arbitrary direction, hence the formalism
used in the sections to follow includes the possibility of dealing with shear waves of horizontal
polarization.

Pressure and shear waves are denoted P- and S-waves, respectively; in the rest of the paper
letters P and S are used for quantities relative to P- and S-waves, and each time a comma appears
between P and S means that the quantities relative to P- or S-waves, respectively, must be used.
Wave speeds are defined by cP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
and cS ¼

ffiffiffiffiffiffiffiffi
m=r

p
; and wave slownesses by sP;S ¼

1=cP;S: Media are at rest for to0:
Throughout the paper, the following notation convention is used (unless otherwise specified):

vectors are typed bold upright; matrices are typed bold upright or black-board boldface upright
(e.g., D).

2.2. Governing equations, boundary and initial conditions

The equation of motion in the structure is

@jsij � r@tvi ¼ 0; i; j ¼ 1; 2; 3; ð1Þ

where @j and @t denote, respectively, partial derivatives with respect to xj and to time, dij is the
Kronecker symbol and Einstein’s summation convention is used. The time derivative of Hooke’s
constitutive law for an elastic isotropic medium is introduced as

@tsij � ldijdpq@qvp � mð@ivj þ @jviÞ ¼ 0: ð2Þ

Boundary conditions at the free surface: At surface I (plane x3 ¼ 0), the free surface conditions
and the definition of loading are associated with the equations

s13ðx1; x2; 0; tÞ ¼ s23ðx1;x2; 0; tÞ ¼ 0; s33ðx1;x2; 0; tÞ ¼ s0fðtÞdðx1Þdðx2Þ; ð3Þ

where fðtÞ describes the history of the loading (with fðtÞ ¼ 0 for to0), s0 its strength and d is the
Dirac function.
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Sliding interface: The boundary conditions associated with sliding frictionless contact at surface
II (plane x3 ¼ h) are

1v3U ¼ 0; 1s33U ¼ 0;

sð1Þ13 ðx1; x2; h; tÞ ¼ sð1Þ23 ðx1; x2; h; tÞ ¼ 0;

sð2Þ13 ðx1; x2; h; tÞ ¼ sð2Þ23 ðx1; x2; h; tÞ ¼ 0; ð4Þ

where 1:U denotes the jump of a quantity across the interface.
Welded interface: The boundary conditions associated with welded contact at surface II are

1s13U ¼ 1s23U ¼ 1s33U ¼ 0 and 1v1U ¼ 1v2U ¼ 1v3U ¼ 0: ð5Þ

3. Solution in the transform domain

The first of the two main stages in the derivation of the solution of the elastodynamics problem
as stated in Section 2 is described in this section. The subsequent steps yield a solution in a
Laplace–Fourier domain in the form of an infinite sum of terms, where each term can be identified
with a generalized ray wave constituent (or, shortly, a ray) of the generalized ray theory.

In the following, the derivation is only presented for welded contact condition at surface II; the
derivation for sliding contact is similar.

Taking into account the time invariance of the configuration, the equations given in Section 2.2
are subjected to a one-sided Laplace transform with respect to time. As an example, the time–
space domain particle velocity viðx; tÞ is transformed to its Laplace–space domain counterpart
#viðx; pÞ according to

#vjðx; pÞ ¼
Z

N

0

expð�ptÞvjðx; tÞ dt;

where p is real and positive. Subsequently, the shift invariance of the configuration with respect to
x1 and x2 is exploited by applying a two-dimensional Fourier transformation to the Laplace-
transformed equations. The Laplace–Fourier domain counterpart or, shortly, the transform
domain counterpart *vjðk1; k2; x3; pÞ of vjðx; tÞ is

*vjðk1; k2;x3; pÞ ¼
Z

N

�N

Z
N

�N

exp½ipðk1x1 þ k2x2Þ� #vj dx1 dx2;

where pk1 and pk2 are the real Fourier transform parameters.
After elimination of the stresses s11; s12 and s22; in the transform domain counterparts of (1) and

(2), six transform domain unknown state quantities remain to represent the wave field in each
medium; they are arranged into the ‘‘motion-stress’’ state vector *b ¼ ð*v1; *v2; *v3;� *s13;� *s23;� *s33Þ

T

(here T means transpose operator). In both media, the differential equation for *b takes the form [13]

@3
*b ¼ �pA*b; ð6Þ

where A is a ð6 � 6Þ matrix. Instead of solving (6) straightforwardly, it is convenient to introduce the
linear transformation

*b ¼ D %w; ð7Þ
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where each column of matrix D is an eigenvector of matrix A: The normalization and ordering of
the eigenvectors is the same as in Ref. [13]. The six components of %w; called the ‘‘wave vector’’, stand
for six independent wave motions each specified by a polarization and a direction of propagation
with respect to the x3-axis. For later use, %w is split in two parts

%w ¼
%w�

%wþ

 !
; %w

� ¼ ð %w1; %w2; %w3Þ
T; %w

þ ¼ ð %w4; %w5; %w6Þ
T;

where %w� is associated with up-going waves (direction of decreasing x3) and %wþ with down-going
waves (direction of increasing x3); %w1 and %w4 represent amplitudes of P-waves, %w2 and %w5 of
S-waves with vertical polarization and, finally, %w3 and %w6 of S-waves with horizontal polarization.
The matrix D is partitioned in ð3 � 3Þ sub-matrices defined by

D ¼
D1 D2

D3 D4

 !
;

where

D1 ¼

icPk1 icSsS
3 k1S�1 �ik2S�1

icPk2 icSsS
3 k2S�1 ik1S�1

�cPsP
3 cSS 0

0
B@

1
CA; D2 ¼

icPk1 �icSsS
3 k1S�1 �ik2S�1

icPk2 �icSsS
3 k2S�1 ik1S�1

cPsP
3 cSS 0

0
B@

1
CA;

D3 ¼

�2micPsP
3 k1 �2micSwk1S�1 misS

3 k2S�1

�2micPsP
3 k2 �2micSwk2S�1 �misS

3 k1S�1

2mcPw �2mScSsS
3 0

0
B@

1
CA;

D4 ¼

2micPsP
3 k1 �2micSwk1S�1 �misS

3 k2S�1

2micPsP
3 k2 �2micSwk2S�1 misS

3 k1S�1

2mcPw 2mScSsS
3 0

0
B@

1
CA;

where S2 ¼ �ðk2
1 þ k2

2Þ; w ¼ 0:5s2S � S2 and sP;S
3 ¼ ðs2P;S � S2Þ1=2: In order to keep the square roots

single valued in the derivations to follow, the complex quantities sP;S
3 are chosen so that R½sP;S

3 �X0;
where R½x� denotes the real part of x:

Substituting (7) into (6), the following differential equation for the wave vector is obtained

@3 %w ¼ �pK %w; ð8Þ

where K is a diagonal matrix whose non-zero terms li are the eigenvalues of A defined by [13]

l1 ¼ �sP
3 ; l2 ¼ �sS

3 ; l3 ¼ �sS
3 ; l4 ¼ sP

3 ; l5 ¼ sS
3 ; l6 ¼ sS

3 :

The six solutions of Eq. (8) have the structure of inhomogeneous plane waves propagating in
direction x3

%wn ¼ wn expð�plnx3Þ: ð9Þ

Note the use of a bar to distinguish %wn from the term wn in factor of the exponential. In
parenthesis appears the phase of the transform domain wave. For quantities in medium 1, the
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phase is chosen zero at surface I and for quantities in medium 2, the phase is chosen zero at
surface II.

Solving the elastodynamics problem in the transform domain consists of determining *bð1Þ via

%wð1Þ in the layer and *bð2Þ via %wð2Þ in the half-space (the solutions are coupled by the interface
conditions). In medium 2, the three components of %wð2Þ�; which are associated with ln with
negative real parts, are necessarily zero in order to satisfy the radiation condition (the amplitude
must decrease when the distance with the source increases).

Until now, only the equations of motion have been used; the determination of the nine terms
(wð1Þ

n and wð2Þ
n ) in factor of the exponential in Eq. (9) follows from a system of nine linear equations

derived from the boundary conditions.
The transform domain counterpart of the boundary conditions at the free surface (3) is

*si3ðk1; k2; 0; pÞ ¼ s0
#fðpÞdi3; i ¼ 1::3; ð10Þ

where #fðpÞ is the Laplace transform of fðtÞ: The action of the point force, expressed in Eq. (10), is
stored in the following vector:

r ¼
$r

&r

 !
¼ ð0; 0; s0

#fðpÞ; 0; 0; 0ÞT;

where $r and &r are vectors with three components. Upon introducing the expressions of the
stresses as given by Eq. (7), relation (10) is rewritten

D
ð1Þ
3 w

ð1Þ� þD
ð1Þ
4 w

ð1Þþ ¼ $r: ð11Þ

(The bar over wð1Þ7 has been omitted because the phase is zero at the free surface.) The transform
domain counterpart of the welded contact conditions (5) is

*v
ð1Þ
i ðk1; k2; h; pÞ ¼ *v

ð2Þ
i ðk1; k2; h; pÞ; *sð1Þi3 ðk1; k2; h; pÞ ¼ *sð2Þi3 ðk1; k2; h; pÞ; i ¼ 1:::3: ð12Þ

Upon introducing the expressions of the stresses and velocities as given by Eq. (7), relation (12) is
rewritten

D
ð1Þ
1 %w

ð1Þ� þD
ð1Þ
2 %w

ð1Þþ �D
ð2Þ
2 w

ð2Þþ ¼ 0;

D
ð1Þ
3 %w

ð1Þ� þD
ð1Þ
4 %w

ð1Þþ �D
ð2Þ
4 w

ð2Þþ ¼ 0: ð13Þ

(The bar over wð2Þþ has been omitted because phase is zero at the interface.) Eqs. (11) and (13)
combine to form a system of nine linear equations:

D
ð1Þ
3 D

ð1Þ
4 0

D
ð1Þ
1 I� D

ð1Þ
2 Iþ �Dð2Þ

2

D
ð1Þ
3 I� D

ð1Þ
4 Iþ �Dð2Þ

4

0
BB@

1
CCA

wð1Þ�

wð1Þþ

wð2Þþ

0
B@

1
CA ¼

$r

0

0

0
B@

1
CA; ð14Þ

where I7; which contain the exponential terms, are defined according to

D
ð1Þ
l %w

ð1Þ� ¼ D
ð1Þ
l I�wð1Þ�; l ¼ 1; 3; D

ð1Þ
l %w

ð1Þþ ¼ D
ð1Þ
l Iþwð1Þþ; l ¼ 2; 4; ð15Þ

ARTICLE IN PRESS

Q. Grimal et al. / Journal of Sound and Vibration 276 (2004) 755–780762



that is,

I� ¼

expð�plð1Þ1 hÞ 0 0

0 expð�plð1Þ2 hÞ 0

0 0 expð�plð1Þ3 hÞ

0
BB@

1
CCA;

Iþ ¼

expð�plð1Þ4 hÞ 0 0

0 expð�plð1Þ5 hÞ 0

0 0 expð�plð1Þ6 hÞ

0
BB@

1
CCA:

3.1. Transform domain solution in the layer

Upon rewriting wð2Þþ in terms of wð1Þ� and wð1Þþ; relation (14) is rewritten as a system of six
equations for wð1Þ

D
ð1Þ
3 D

ð1Þ
4

½Dð1Þ
1 �D

ð2Þ
2 ðDð2Þ

4 Þ�1D
ð1Þ
3 �I� ½Dð1Þ

2 �D
ð2Þ
2 ðDð2Þ

4 Þ�1D
ð1Þ
4 �Iþ

 !
wð1Þ�

wð1Þþ

 !
¼ r:

Or in compact form

Dwð1Þ ¼ r: ð16Þ

Assuming that D is non-singular, the solution of this equation can be formally expressed as

wð1Þ ¼ D�1r: ð17Þ

The velocities and stresses in the time–space domain may, at this stage, be calculated from
*bð1Þ ¼ Dð1ÞðD�1rÞ by performing inverse Laplace and Fourier transformations; different methods
(numerical methods, calculation of residues, etc.) may be used that only yield approximate
solutions. In this study, an alternative procedure which makes use of the Cagniard–de Hoop
method and yields exact solutions is used. The method requires an appropriate form of the
transform domain solution to be derived from (17); in particular, all the terms where the
Laplace transform parameter p occurs should be in the form exp½�pgðk1; k2;x3Þ�; where g is not
function of p:

The subsequent derivation follows in essence the methodology presented by Ma and Lee [15]
(see also Refs. [17,18]) for calculating the response of a plate of infinite extent subjected to a
dynamic in-plane loading. Let the matrix D be split into two parts,

D ¼ Gþ S;

with

G ¼
G1 0

0 G2I
þ

 !
; S ¼

0 S1

S2I
� 0

 !
;

where G1; G2; S1 and S2 are ð3� 3Þ matrices. Upon defining R ¼ �S
�1
G; relation (17) takes the

form

wð1Þ ¼ ðId� RÞ�1S
�1r; ð18Þ
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where Id denotes the identity matrix. Finally, denoting s ¼ S�1r and expanding matrix ðId� RÞ�1

into power series of R; relation (18) takes the form

wð1Þ ¼ ðId� RÞ�1s ¼
XN
k¼0

Rks: ð19Þ

(See Ref. [16] for a discussion of the convergence of the sum in Eq. (19).) The components of s can
be viewed as the amplitudes of the waves generated by the point force at the free surface. The vector
s is split into two parts: s ¼ ð$s; &sÞT; where $s and &s are vectors with three components defined by

$s ¼ ð0; 0; 0ÞT; &s ¼
s0

#fðpÞ
2m1DR;1

ðsP;1w1; sS;1sP;1
3 S; 0ÞT;

where DR;1 ¼ sP;1
3 sS;1

3 S2 þ w2
1 is the ‘‘Rayleigh wave denominator’’. Noting that ðS2I

�Þ�1G2I
þ ¼

IþS�1
2 G2I

þ; matrix R may be written under the form

R ¼
0 IþRIII

þ

RI 0

 !
; ð20Þ

where RI and RII are three by three matrices given by

RI ¼ �S
�1
1 G1; RII ¼ �S

�1
2 G2:

Matrix RI which only depends on the properties of medium 1, and matrix RII; which depends both
on the properties of media 1 and 2, are the well-known reflection coefficient matrices at surfaces I
and II. Both have the following form:

RK ¼

RK
PP RK

SP 0

RK
PS RK

SS 0

0 0 RK
SHSH

0
B@

1
CA; K ¼ I; II;

where the subscript SH stands for S-waves with horizontal polarization. The coefficient RK
ab is

associated with an incident wave of polarization a reflected as a wave with polarization b: The
calculated coefficients are given in Appendix A. The compact notation

%RII ¼ IþRIII
þ ¼ �

RII
PPe

�2pl4h RII
SPe

�pðl4þl5Þh 0

RII
PSe

�pðl4þl5Þh RII
SSe

�2pl5h 0

0 0 RII
SHSHe�2pl5h

0
B@

1
CA; ð21Þ

is used in the following (superscript ‘‘(1)’’ applies to all ln in Eq. (21)).
Giving the form of matrix R shown in Eq. (20), the power matrices Rk have specific forms for

even and odd values of k

Rk ¼
ð %RIIRIÞ

q 0

0 ðRI %RIIÞ
q

 !
; k ¼ 2q 8qAN;

Rk ¼
0 %RIIðRI %RIIÞ

q

RIð %RIIRIÞ
q 0

 !
; k ¼ 2q þ 1 8qAN;

where N is the set of all natural numbers including 0.
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Combining (7), (9) and (19), the final form of the transform domain solution is found to be

*b
ð1Þ
i ðk1; k2;x3; pÞ ¼

XN
k¼0

X6

n¼1

D
ð1Þ
in ðRksÞn expð�plð1Þn x3Þ ¼

XN
k¼0

*b
ð1Þ
i;k ¼

XN
q¼0

ð *bð1Þi;2q þ *b
ð1Þ
i;2qþ1Þ; ð22Þ

where ð:Þn (or ½:�n in the following) denotes the nth-component of a vector and

*b
ð1Þ
i;2q ¼

X6

n¼4

D
ð1Þ
in ½ðRI %RIIÞ

q&s�n expð�plð1Þn x3Þ 8qAN;

*b
ð1Þ
i;2qþ1 ¼

X3

n¼1

D
ð1Þ
in ½ %RIIðRI %RIIÞ

q&s�n expð�plð1Þn x3Þ 8qAN: ð23Þ

The form of solution (22) is identical to the solution obtained by intuition with the generalized
ray method. Indeed, a component *b

ð1Þ
i is basically a sum of many terms, each of which corresponds

to a generalized ray. The amplitude of each term of the sum is the product of a component of the
source vector s with reflection coefficients and a polarization term contained in matrix D: The
phase term associated with each ray, is a product of expð�plð1Þn x3Þ with exponential terms, of the
form expð�plð1Þn hÞ; included in %RII: The summation over n is the summation of the contributions
of the waves of different polarizations arriving at the receiver. Each term of the sum over k is
called a ray group and contains the contributions of rays which have been reflected k times on the
layer boundaries. As can be seen from the sequences of reflection coefficients in (23), *b

ð1Þ
i;2q and

*b
ð1Þ
i;2qþ1 are associated with down-going and up-going waves, respectively. As an example, the first

three groups containing the rays which have been reflected zero, one and two times are detailed
below:

*b
ð1Þ
i;0 ¼ Di4s4e

�psP
3

x3 þ Di5s5e
�psS

3
x3 ;

*b
ð1Þ
i;1 ¼Di4RII

PPs4e
�psP

3
ð2h�x3Þ þ Di4RII

SPs5e
�pðsP

3
ðh�x3ÞþsS

3
hÞ

þ Di5RII
PSs4e

�pðsP
3

hþsS
3
ðh�x3ÞÞ þ Di5RII

SSs5e
�psS

3
ð2h�x3Þ;

*b
ð1Þ
i;2 ¼Di4RI

PPRII
PPs4e

�psP
3
ð2hþx3Þ þ Di4RI

SPRII
PSs4e

�pðsP
3
ðhþx3ÞþsS

3
hÞ

þ Di4RI
PPRII

SPs5e
�pðsP

3
ðhþx3ÞþsS

3
hÞ þ Di4RI

SPRII
SSs5e

�pð2sS
3

hþsP
3

x3Þ

� Di5RI
PSRII

PPs4e
�pð2sP

3
hþsS

3
x3Þ þ Di5RI

SSRII
PSs4e

�pðsP
3

hþsS;1
3

ðhþx3ÞÞ

þ Di5RI
PSRII

SPs5e
�pðsP

3
hþsS;1

3
ðhþx3ÞÞ þ Di5RI

SSRII
SSs5e

�psS
3
ð2hþx3Þ;

where superscripts ‘‘(1)’’ have been omitted for quantities Din and sP;S
3 : The ray group *b

ð1Þ
i;0 contains

ray P and ray S which are the direct P- and S-waves arriving at the receiver (Lamb’s problem for
a half-space); the ray group *b

ð1Þ
i;1 contains the waves reflected once on surface II, rays PP; SP; PS

and SS; the ray group *b
ð1Þ
i;2 contains the waves reflected once on surface II and once on surface I,

PPP; PSP; SPP; SSP; PPS; PSS; SPS and SSS:
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Denoting by ½ *bð1Þi;2q� (resp. ½ *bð1Þ
i;2qþ1�) the contribution of a single generalized ray to *b

ð1Þ
i;2q (resp.

*b
ð1Þ
i;2qþ1), the symbolic forms of the rays are

½ *bð1Þi;2q� ¼ D
ð1Þ
in

Y
2q

Rlmsr exp �p
X
2q

sP;S
3 h þ lð1Þn x3

 !" #
; n ¼ 4; 5; 6;

½ *bð1Þi;2qþ1� ¼ D
ð1Þ
in

Y
2qþ1

Rlmsr exp �p
X
2qþ1

sP;S
3 h þ lð1Þn x3

 !" #
; n ¼ 1; 2; 3; ð24Þ

where
Q

N Rlm denotes the product of n scalar reflection coefficients, sr denotes the amplitude of
the wave generated at the source level, and subscript n is associated with the polarization at the
receiver.

From a mathematical point of view, solution (24) is suited to the application of the Cagniard–
de Hoop method because the Laplace parameter p only appears in the factor in the exponential.

3.2. Transform domain solution in the half-space

From (14), wð2Þþ is rewritten in terms of wð1Þþ

wð2Þþ ¼ TII %w
ð1Þþ;

where

TII ¼ ½ðDð1Þ
1 Þ�1D

ð2Þ
2 � ðDð1Þ

3 Þ�1D
ð2Þ
4 ��1½ðDð1Þ

1 Þ�1D
ð1Þ
2 � ðDð1Þ

3 Þ�1D
ð1Þ
4 �:

The components of TII have exactly the same mathematical expressions as the transmission
coefficients of plane waves and TII is the well-know transmission coefficient matrix of the form

TII ¼

T II
PP T II

SP 0

T II
PS T II

SS 0

0 0 T II
SHSH

0
B@

1
CA:

Calculated expressions for the coefficients are given in Appendix A.
Given the solution *bi;2q for down-going waves (associated with wð1Þþ) as expressed in Eq. (23),

the transform-domain solution in the half-space is

*b
ð2Þ
i ðk1; k2; x3; pÞ ¼

XN
q¼0

*b
ð2Þ
i;2q; ð25Þ

where

*b
ð2Þ
i;2q ¼

X6

n¼4

D
ð2Þ
in ½TIII

þðRI %RIIÞ
q&s�n exp½�plð2Þn ðx3 � hÞ�: ð26Þ

The form of solution (26) is identical to that obtained by intuition with the generalized ray
method. The first two groups of transmitted waves are detailed below for illustration.

*b
ð2Þ
i;0 ¼D

ð2Þ
i4 T II

PPs4e
�pðsP;1

3
hþsP;2

3
ðx3�hÞÞ þ D

ð2Þ
i4 T II

SPs5e
�pðsS;1

3
hþsP;2

3
ðx3�hÞÞ

þ D
ð2Þ
i5 T II

PSs4e
�pðsP;1

3
hþsS;2

3
ðx3�hÞÞ þ D

ð2Þ
i5 T II

SSs5e
�pðsS;1

3
hþsS;2

3
ðx3�hÞÞ;
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*b
ð2Þ
i;2 ¼D

ð2Þ
i4 T II

PPRI
PPRII

PPs4e
�pð3sP;1

3
hþsP;2

3
ðx3�hÞÞ þ D

ð2Þ
i4 T II

PPRI
SPRII

PSs4e
�pð2sP;1

3
hþsS;1

3
hþsP;2

3
ðx3�hÞÞ

þ D
ð2Þ
i4 T II

PPRI
PPRII

SPs5e
�pð2sP;1

3
hþsS;1

3
hþsP;2

3
ðx3�hÞÞ þ D

ð2Þ
i4 T II

PPRI
SPRII

SSs5e
�pð2sS;1

3
hþsP;1

3
hþsP;2

3
ðx3�hÞÞ

� D
ð2Þ
i4 T II

SPRI
PSRII

PPs4e
�pð2sP;1

3
hþsS;1

3
hþsP;2

3
ðx3�hÞÞ þ D

ð2Þ
i4 T II

SPRI
SSRII

PSs4e
�pðsP;1

3
hþ2sS;1

3
hþsP;2

3
ðx3�hÞÞ

� D
ð2Þ
i4 T II

SPRI
PSRII

SPs5e
�pðsP;1

3
hþ2sS;1

3
hþsP;2

3
ðx3�hÞÞ þ D

ð2Þ
i4 T II

SPRI
SSRII

SSs5e
�pð3sS;1

3
hþsP;2

3
ðx3�hÞÞ

� D
ð2Þ
i5 T II

PSRI
PPRII

PPs4e
�pð3sP;1

3
hþsS;2

3
ðx3�hÞÞ þ D

ð2Þ
i5 T II

PSRI
SPRII

PSs4e
�pð2sP;1

3
hþsS;2

3
ðx3�hÞÞ

þ D
ð2Þ
i5 T II

PSRI
PPRII

SPs5e
�pð2sP;1

3
hþsS;1

3
hþsS;2

3
ðx3�hÞÞ þ D

ð2Þ
i5 T II

PSRI
SPRII

SSs5e
�pð2sS;1

3
hþsP;1

3
hþsS;2

3
ðx3�hÞÞ

� D
ð2Þ
i5 T II

SSRI
PSRII

PPs4e
�pð2sP;1

3
hþsS;1

3
hþsS;2

3
ðx3�hÞÞ þ D

ð2Þ
i5 T II

SSRI
SSRII

PSs4e
�pðsP;1

3
hþ2sS;1

3
hþsS;2

3
ðx3�hÞÞ

� D
ð2Þ
i5 T II

SSRI
PSRII

SPs5e
�pðsP;1

3
hþ2sS;1

3
hþsS;2

3
ðx3�hÞÞ þ D

ð2Þ
i5 T II

SSRI
SSRII

SSs5e
�pð3sS;1

3
hþsS;2

3
ðx3�hÞÞ:

An illustration of ray groups in the half-space is sketched in Fig. 2. The group *b
ð2Þ
i;2 is constructed

from *b
ð1Þ
i;2 ; that is, each wave in *b

ð2Þ
i;2 is a wave of *b

ð1Þ
i;2 transmitted with P or S polarization. The series

of terms of groups *b
ð2Þ
i;2q can all be constructed systematically from (26).

Denoting by ½ *bð2Þi;2q� the contribution of a single ray to *b
ð2Þ
i;2q; the symbolic form of the contribution

of a ray is

½ *bð2Þi;2q� ¼ D
ð2Þ
in T II

tn

Y
2q

Rlmsr exp �p
X
2qþ1

sP;S
3 h þ lð2Þn ðx3 � hÞ

 !" #
; n ¼ 4; 5; 6; ð27Þ

where T II
tn is a transmission coefficient and the definition of the other quantities are the same as for

(24). And, as before, from the mathematical point of view, Eq. (27) is suited to the application of
the Cagniard–de Hoop method.

4. Solutions in the time–space domain

The second and last stage of the derivation of the solution of the problem stated in Section 2 is
described in this section. The procedure described below yields the time–space counterpart for
each term of the solution in form (24) and (27).
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Half-space

Point force

x3
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Fig. 2. Illustration of the ray groups. Only rays of type 2 (arriving in the half-space) are shown. Each ray is built with

segments, where each segment represents a journey between surfaces I and II, or between a surface and the receiver (last

segment). The group number is the number of segments of the rays of the group. Only one ray of each group is shown.
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The solution for a single generalized ray contribution in layer (24) and in the half-space (27) is
of the form

½ *bi� ¼ BiðSÞ exp½�pgðSÞ�; ð28Þ

where

BiðSÞ ¼ D
ð1Þ
in

Y
2q

Rlmsr ðdown-going ray in the layerÞ;

BiðSÞ ¼ D
ð1Þ
in

Y
2qþ1

Rlmsr ðup-going ray in the layerÞ;

BiðSÞ ¼ D
ð2Þ
in T II

tn

Y
2q

Rlmsr ðdown-going ray in the half-spaceÞ:

The inverse Fourier transform of (28) is

½ #biðx; pÞ� ¼ ðp=2pÞ2
Z

N

�N

Z
N

�N

BiðSÞ exp½�pgðSÞ� dk1 dk2; ð29Þ

which is the Laplace transform of the time–space solution for a generalized ray contribution
½biðx; tÞ�: The Cagniard–de Hoop method is applied to (29). In essence, the method consists of
changing the variable of integration and of deforming a contour of integration in the complex
plane so that an equation—the Cagniard–de Hoop path of integration—of the form gðSÞ ¼ t;
where t is real and positive, is satisfied (see Appendix B). Eventually, the inverse Laplace
transform is found by inspection. The details of the derivation of the solution for a receiver
located on the x3-axis were given in Ref. [14]; the final solution is

½biðx3; tÞ� ¼ 0 for toTa;

½biðx3; tÞ� ¼ �
1

2p
@ttfðtÞ�R½BiðSÞS@tS� for tXTa;

8<
: ð30Þ

where Ta denotes the arrival time of the wave associated with the contribution (see Appendix B),
time convolution is denoted by �; and S is solution of the Cagniard–de Hoop contour equation.
The solution of the Cagniard–de Hoop contour for a receiver in the layer has an explicit analytic
form (solution given in Appendix B); for a receiver in the half-space, the contour must be
calculated with a numerical method of solution.

5. Numerical calculations

5.1. Computer program

A computer program has been developed based on the theory presented above. It mainly
consists of (i) numbering and constructing all the rays arriving in a given time window, according
to Eqs. (22) and (25) and by using the formula for the arrival times; (ii) calculating the time–space
domain response for each ray according to Eq. (30) with @ttfðtÞ ¼ dðtÞ: For the purposes of
numerical implementation, rays arriving at a receiver in the layer—rays of type 1—and rays
arriving at a receiver in the half-space—rays of type 2—are treated separately. Eventually, all the
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contributions are summed. The elastodynamic responses due to ray groups of increasing order are
calculated successively, and independently. Note that the amplitude of each ray in a given group
diverges with time while the sum of the amplitudes of all the rays in the group is convergent (this
was first mentioned by Mencher [1]). The structure of the computer program is sketched in Fig. 3.

The number of rays in a group increases in powers of two with the number of segments: a group
of rays with n segments contains 2n rays.

Ray coding: The information on each ray is coded in a sequence of parameters. Sequences for
rays of type 2 include: (i) the number of segments of the ray group; (ii) the number of P segments;
(iii) the polarization at the source and at the receiver; (iv) the number of reflection and
transmission coefficients of each type (RI

PP; RI
PS; RI

SP; RI
SS; RII

PP; RII
PS; RII

SP; RII
SS; T II

PP; T II
PS; T II

SP;
T II

SS). Sequences for rays of type 1 contain the same quantities except the transmission coefficients.
It is important to note that the sequence codes do not depend on time nor on the position of the
receiver.

The various sequences associated with one ray group are obtained by iteration, departing from
the set of sequences of the previous group; the sequences of the first ray group are used in the
program for the initialization of the iterative process.

Degenerescence of rays: In a given ray group, many rays that are actually different have the
same sequence of code (for example the rays of type 1 PPPSP and PSPPP have the same
sequence). This phenomenon, referred to as degenerescence, must be taken into account in order
to minimize the computation time and required memory space. Calculating ray groups of more
than a few segments without taking degenerescence into account is practically impossible. The
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Receiver in the half-space (ray of type 2)

Receiver in the layer (ray of type 1)

Sequences for group sg

Calculation of arrival times
and Cagniard contours

Calculation of source and
polarization terms.
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transmission/reflection
coefficients

Assembling all terms for
each ray (product)

Sum the amplitudes of all rays
(take into account the number
of occurrences of each ray)

Build the sequences
of group sg
(transmitted)

Build the sequences of
group sg

Sequences of
group sg-1
(sg=1 given for
initialisation)

Build the sequences of group sg-1
(reflected on I) (sg=1 given for
initialisation)

Build the sequences of
group sg-2 (reflected
on II)

Calculates the contribution of ray
group sg

1b

1a

2

Fig. 3. Synopsis of the computer program that calculates the response as a sum of generalized ray contributions. The

group number (number of segments of the rays) is denoted by sg. The discontinuous lines correspond to stages at which

degenerated rays are eliminated. In boxes 1a and 1b are illustrated the iterative generation of the ray sequences. In box 2

is illustrated the kernel of the program which calculates the space-time domain contribution of a ray group.
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number of degenerated rays in a group increases with the number of segments of the ray group,
for instance, among the 67,108,864 ð226Þ rays of type 1 with 26 segments, only 7232 have different
sequences and actually need to be computed. The number of occurrences of a given sequence is
stored together with the code of the sequence.

5.2. Program verification

Many analytical solutions available in the literature have been used to check the stress and
displacement (or velocity) responses calculated by the program.

The solution of Lamb’s problem (dynamic point force acting at the surface of a half-space), as
given by Johnson [20] has been implemented and the results perfectly match those obtained with
the authors’ program. The static solutions of Lamb’s problem [21, p. 412] have also been used.

It could be checked that the program properly handles the generation of rays, treatment of
degenerescence and summation of ray groups by calculating the long-time (static) response of the
layer to a step of force (fðtÞ ¼ HðtÞ; where HðtÞ is the Heaviside step function) with sliding contact
condition at the interface and taking numerical values for the mechanical parameters of the half-
space such that it can be considered as rigid in comparison with the layer. These material and
loading configurations correspond to a static solution obtained by Lur’e [22]; in his calculations,
Lur’e considers a rigid half-space and an arbitrary distributed load at the free surface. For a point
force of unit amplitude normal to the free surface and a receiver on the x3-axis, the displacement is

u3 ¼
h

4p2m

Z
N

�N

Z
N

�N

X2ðgzÞ
gDðghÞ

dZ dz; where DðghÞ ¼ 2hgþ sinh 2hg;

X2ðgzÞ ¼
1

h
½gh cosh gh sinh gz � gz cosh gz sinh gh þ 2ð1� nÞ sinh gz sinh gh�; ð31Þ

where z ¼ h � x3; g ¼ ðZ2 þ z2Þ1=2 and n is the Poisson ratio of the layer. (Note that there is a
singularity in the integrand of (31) at g ¼ 0 that must be dealt with in the evaluation of the
integral.) The long-time response of the layer is calculated with the generalized ray solution at
location x3 ¼ 0:015 with h ¼ 0:02 and r1 ¼ 1750; cP;1 ¼ 1678; cS;1 ¼ 685 (setting l2 ¼ 10l1 and
m2 ¼ 10m1 is enough for medium 2 to be considered as rigid). Comparison with the static solution
obtained with (31) is shown in Fig. 4 in a time window corresponding to the calculation of the first
20 ray groups. Both the responses with sliding and welded contact at surface II are plotted; sliding
contact corresponds to the solution of Lur’e and is in agreement with the static value; the response
for welded contact condition is shown for comparison.

6. Results

The numerical results presented in this section are relevant to the study of non-penetrating
impact on human thorax. In the structure shown in Fig. 1, the layer and the half-space correspond
to the thoracic wall and the lung, respectively. The model is used to characterize the transmission
of energy in the lung, which is a biological tissue having little resistance to dynamic loadings [23].
The material parameters of the media are given in Table 1; they are such that medium 1 is ‘‘hard’’
in comparison with medium 2. From the viewpoint of wave propagation, the impedances of the
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media are of different orders of magnitude, hence the layer and the half-space are said to be
weakly coupled, and the typical results obtained may be valid for other weakly coupled structures.
The thickness h of the layer is set to 2 cm: Both welded and sliding contact conditions at surface II
were considered in the computations. (The most appropriate contact condition to model the
thoracic wall-lung interface is probably sliding. Indeed, the lung and the thoracic wall are
separated by a small potential space—the pleural cavity—which contains a lubricating fluid
allowing the media to move easily on each other.)

Throughout this section, only receivers located on the x3-axis are considered, that is, x1 ¼
x2 ¼ 0; in the rest of this section, only the x3-co-ordinate is specified.
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Fig. 4. Displacement u3ðtÞ in the layer for a step of force ðfðtÞ ¼ HðtÞÞ at the free surface, the half-space being rigid, for

sliding and welded contact at the interface. The straight horizontal line corresponds to the static response obtained by

Lur’e [22] for sliding contact.

Table 1

Material parameters and wave speeds in media 1 and 2

l1 m1 r1 c1
S c1

P l2 m2 r2 c2
S c2

P

(MPa) (MPa) ðkg=m3Þ ðm=s1Þ ðm=s1Þ (MPa) (MPa) ðkg=m3Þ ðm=s1Þ ðm=s1Þ

3 285 821 1 750 685 1 678 0.4 0.26 600 21 40
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The time history fðtÞ of an impact is modelled by a four-point optimum Blackman window
function [13] of duration T and of unit amplitude. Its second derivative is

@ttfðtÞ ¼ 0 for tp0 and tXT ; and @ttfðtÞ ¼ �ð2p=TÞ2
X3

n¼0

bnn2 cosð2pnt=TÞ

for 0otoT ; where b0 ¼ 0:35869; b1 ¼ �0:48829; b2 ¼ 0:14128 and b3 ¼ �0:01168: The amplitude
of the loading is set to s0 ¼ �1:

The duration of the impulse is considered with respect to the transit time in the layer ðh=cP;1 ¼
11:919 msÞ; which is a characteristic time for the response of the structure. Figs. 5 and 6 show
typical responses for various loading durations in terms of the stress s33; in the half-space at a
receiver placed on the x3-axis at 5 mm from the interface. Both ‘‘short’’ pulses—of a duration of
about or less than the transit time—and ‘‘long’’ pulses—of a duration several times the transit
time—are considered. For short pulses (Fig. 5), the responses obtained with sliding or welded
contact were indistinguishable. In the plots of Fig. 5, the arrival times of the waves with multiple
reflections at the surfaces of the layer are manifest; the energy arriving at the receiver for a long-
time after the pulse has ended. Slight differences due to the contact conditions are observed for
long pulses (Fig. 6); both amplitudes and shapes are influenced (in particular, the response is
shorter with sliding contact). In the plots of Fig. 6, it is seen that for loading durations of more
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Fig. 5. Stress s33ðtÞ for a receiver in the half-space at 5 mm from the interface for welded contact. —, impulse duration
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that 10 transit times, the wave phenomena observed in Fig. 5 are replaced by vibrations of small
amplitudes. For longer loadings, the response has almost the shape of the input pulse and
vibrations disappear.

Although all the responses shown in Figs. 5 and 6 correspond to a loading of unit amplitude,
large discrepancies in the amplitude of the response are observed. It is seen that the shorter the
loading, the greater the amplitude of the transmitted stress. In other words, the results
demonstrate that a load applied slowly generates stresses of smaller amplitudes as compared to
the same load applied rapidly.

Fig. 7 shows the response to a 100 ms-pulse at receivers in the half-space at various distances d

from the interface; it is seen that the shape of the pulse does not change during the pro-
pagation and that the amplitude only slightly decreases. These characteristics, typical of weakly
coupled bimaterial, were already reported in Ref. [14]—the low decreasing of the amplitude
of the waves in medium 2 was shown to correlate with the small geometrical spreading associated
with a weak curvature of the wave fronts. Plots of Fig. 7 may be compared to those of Fig. 8
which correspond to a material configuration resulting in strong mechanical coupling (the
parameters of medium 2 are set to r2 ¼ 600 kg=m3; l2=1640 MPa, m2=410 MPa, the
parameters of medium 1 are as indicated in Table 1). With this material configuration, the
propagation patterns are very different to those of the weakly coupled case: the amplitude
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of the pulse decreases rapidly with the distance from the interface, and the pulse shape changes
during propagation. It is interesting to note that the amplitude at about 10 cm from the interface
is of the same order of magnitude for the two material configurations—weak-coupled and
strongly coupled cases—although the amplitude close to the interface is more than 50 times larger
for strong coupling.

Kinematic response of the layer: As a consequence of weak coupling between the layer
and the half-space, the kinematic of the layer is only slightly influenced by the presence of
the half-space. In particular, as shown in Fig. 9, the kinematic of the layer under a ‘‘long’’
dynamic loading is close to that of a plate of infinite extent calculated with the classical theory of
plates. The response at the epicenter of a plate for a dynamic point load excitation is calculated
with [24]

v3ðtÞ ¼
P

8
ffiffiffiffiffiffiffiffiffi
Drh

p fðtÞ;

where D ¼ ðEh3Þ=ð12ð1� n2ÞÞ; P is the loading amplitude, E and n are Young’s modulus and the
Poisson ratio of the layer, respectively. It is seen in Fig. 9 that, as could be expected, the longer the
pulse, the better the correlation between the plate and layer responses.
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7. Conclusion

In this paper a method has been presented to calculate the response of a structure made of a
layer overlaying a half-space subjected to a dynamic point force applied on the free surface. The
method of solution yields an exact solution of the elastodynamics problem in terms of generalized
rays; however, the generalized ray solution is not obtained ‘‘by intuition’’ but as a result of
algebraic manipulations in a Laplace–Fourier transform domain. The mathematical expression of
each generalized ray contributing to the response in a given time window is derived systematically
from the form of the solution. The method presented is independent of the material parameters of
the layer and the half-space.

The analysis was limited to points on the axis of symmetry of the configuration ðx1 ¼ x2 ¼ 0Þ;
in this case the time histories of velocities and stresses in the structure can be calculated with
minimum use of numerical methods (in particular, the response at a point in the layer is obtained
in closed form). It is thus possible to calculate the very large number of generalized rays required
to obtain responses in relatively large time windows. The results presented in this paper
demonstrate that exact solutions, for a tridimensional problem, can be obtained in practice with
the generalized ray theory for impulses of about 30 times the characteristic time of the structure
(i.e., transit time in the layer). Responses obtained by summation of about 500 � 106 generalized
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rays are presented (of course, due to degenerescence, many rays need not be explicitly computed).
As an indication of the computational efforts developed, the computation time required to obtain
the results presented is less than 1 h on a standard personal computer, and the responses plotted in
Fig. 4 required about ninety seconds.

A practical limit arose in the computations for ray groups containing more than about 30
segments (which corresponds to loading durations of more than 30 transit times). This is due to
the fact that the amplitude of each ray diverges with time (while the sum of all the rays of a given
group converges), in such a way that the first rays calculated (say those of ray group one) have
very large amplitudes at large times when the rays of higher order groups arrive at the receiver:
When these large amplitudes are summed, numerical errors are induced.

Concerning the biomechanical application, the results contribute to elucidate the response of
the thorax to loadings of various durations. Typical impacts of ‘‘high’’-velocity projectiles result
in loading durations in range 1–500 ms: The method and the associated computer program make it
possible to determine, for arbitrary loading history and a wide range of impulse durations: (i) the
maximum amplitudes of velocities and stresses transmitted; (ii) the time elapsed before
the structure returns at rest; (iii) the effects of the contact condition (sliding or welded) assumed
at the thoracic wall-lung interface.
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Appendix A. Reflection and transmission coefficients

The explicit expressions of the coefficients are obtained through the derivation of the solution in
the transform domain presented in Section 3. They are equivalent to the well-known coefficients
for plane waves.

Reflection coefficients at surface I (free surface):

RPP ¼ RSS ¼ ðsP;1
3 sS;1

3 S2 � w2
1ÞD

�1
R;1;

RPS ¼ ð�2cP;1sS;1sP;1
3 w1SÞD�1

R;1; RSP ¼ ð2sP;1cS;1sS;1
3 w1SÞD�1

R;1; ðA:1Þ

where DR;1 ¼ sP;1
3 sS

3;1S2 þ w2
1 is the Rayleigh wave denominator.

Reflection and transmission coefficients at interface II (welded contact):

RPP ¼ ðF ðbsP;1
3 � csP;2

3 Þ � Hða þ dsP;1
3 sS;2

3 ÞS2ÞD�1;

RPS ¼ ð�2sP;1
3 ðab þ cdsP;2

3 sS;2
3 ScP;1ÞðcS;1DÞ�1;

RSP ¼ ð2sS;1
3 ðab þ cdsP;2

3 sS;2
3 ScS;1ÞðcP;1DÞ�1;

RSS ¼ ðEðbsS;1
3 � csS;2

3 Þ � Gða þ dsP;2
3 sS;1

3 ÞS2ÞD�1; ðA:2Þ

TPP ¼ ð2r1sP;1
3 FcP;1ÞðDcP;2Þ

�1; TPS ¼ ð�2r1sP;1
3 HScP;1ÞðDcS;2Þ

�1;

TSP ¼ ð2r1sS;1
3 GScS;1ÞðDcP;2Þ

�1; TSS ¼ ð2r1sS;1
3 EcS;1ÞðDcS;2Þ

�1; ðA:3Þ

where

a ¼ r2ð1� 2c2
S;2S2Þ � r1ð1 � 2c2

S;1S2Þ; b ¼ r2ð1 � 2c2
S;2S2Þ þ 2r1c2

S;1S2;

c ¼ r1ð1� 2c2
S;1S2Þ þ 2r2c2

S;2S2; d ¼ 2ðr2c2
S;2 � r1c2

S;1Þ;

E ¼ bsP;1
3 þ csP;2

3 ; F ¼ bsS;1
3 þ csS;2

3 ;

G ¼ a � dsP;1
3 sS;2

3 ; H ¼ a � dsP;2
3 sS;1

3 ; D ¼ EF þ GHS2:
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Reflection and transmission coefficients at interface II (frictionless sliding contact) [25]:

RPP ¼ ðE2F1 þ F2G1ÞH�1; RSP ¼ ð�4F2m1cS;1sS;1
3 w1ÞðHcP;1Þ

�1;

RPS ¼ ð4F2m1cP;1sP;1
3 w1ÞðHcS;1Þ

�1; RSS ¼ ð�E2F1 þ F2G1ÞH�1;

TPP ¼ ð4F1m1cP;1w1w2S�1ÞðHcP;2Þ
�1; TSP ¼ ð4F1m1cS;1sS;1

3 w2ÞðHcP;2Þ
�1;

TPS ¼ ð4F1m1cP;1w1sP;2
3 ÞðHcS;2Þ

�1; TSS ¼ ð4F1m1cS;1sS;1
3 sP;2

3 SÞðHcS;2Þ
�1; ðA:4Þ

where

Em ¼ 2mmS�1DR;m; Fm ¼ 0:5S�1sP;m
3 s2S;m;

Gm ¼ 2mmðs
P;m
3 sS;m

3 S � w2
mS�1Þ; H ¼ ðF1E2 þ F2E1Þ;

where

DR;m ¼ sP;m
3 sS;m

3 S2 þ w2
m; m ¼ 1; 2:

Appendix B. Cagniard–de Hoop contours

Cagniard–de Hoop contour in the layer: Variable S that defines the Cagniard–de Hoop contour
for a receiver placed on the x3-axis is the solution of an equation of the form

t ¼ gðSÞ ¼
X

sP;S;1
3 h þ sP;S;1

3 x3: ðB:1Þ

The solution for (B.1) was obtained in Ref. [14] and is reproduced below. Rewriting (B.1) under
the form

t ¼ ðmh7x3dbPÞs
P;1
3 þ ðnh7x3dbSÞs

S;1
3 ;

where b ¼ P or S is the polarization associated with the last ray segment and dSS ¼ dPP ¼ 1;
dSP ¼ dPS ¼ 0; m and n are, respectively, the number of P and S ray segments (not counting the
last segment). Denoting HP ¼ ðmh7x3dbPÞ and HS ¼ ðnh7x3dbSÞ; the arrival time Ta of the ray is

Ta ¼ HPsP;1 þ HSsS;1:

The Cagniard–de Hoop contour is given by

S ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2S;2 � Y 2

q
;

where, if HPaHS

Y ¼
tHS � HP

ffiffiffiffi
D

p
H2

S � H2
P

with D ¼ ½ðHPsS;2 þ HSsP;1Þ
2 � T2

a þ t2�;

and if HP ¼ HS ¼ H

Y ¼ ½2H2sS;2ðsP;1 þ sS;2Þ þ t2 � T2
a �ð2tHÞ�1:

Cagniard–de Hoop contour in the half-space: Variable S that defines the Cagniard–de Hoop
contour for a receiver placed on the x3-axis is the solution of an equation of the form

t ¼ gðSÞ ¼
X

sP;S;1
3 h þ sP;S;2

3 ðx3 � hÞ;
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or, by using the same notation as for the contour in the layer,

t ¼ mhsP;1
3 þ nhsS;1

3 þ ðh � x3Þs
P;S;2
3 : ðB:2Þ

Unless m þ n ¼ 1; the solution S of (B.2) must be calculated with a numerical method.
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